
DLCM Integration Guide

Table of Contents
1. DLCM Architecture. 2

1.1. DLCM Solution. 2

1.2. OAIS Model . 2

2. Integration Points . 4

2.1. For Submission . 4

2.2. For Dissemination. 4

2.3. For Developers. 4

3. REST Web Services . 5

3.1. Overview. 5

3.1.1. URL Structure. 5

3.1.2. CRUD Operations. 6

3.1.3. HTTP Status Codes. 6

3.1.4. Error Details . 7

3.2. Collection . 8

3.2.1. Structure . 9

Data Section . 9

Page Section . 9

Links Section . 10

3.2.2. Usage . 11

To get a list of things. 11

3.3. Instance. 11

3.3.1. Structure . 12

Links Section . 12

3.3.2. Usage . 13

To get a resource . 13

To create a new resource . 14

To update a resource . 14

To delete a resource . 14

3.4. Security . 15

3.4.1. Authentication . 15

3.4.2. Application Roles . 15

3.4.3. Roles . 16

Organizational Unit Definition . 17

4. Data Access . 18

4.1. Data Access Scales . 18

4.2. Data Access Compatibility . 19

5. Submission Integration. 20

5.1. Overview . 20

5.2. Wizard-like assisted deposit . 20

5.2.1. To create a deposit . 21

5.2.2. To deposit data files . 22

By creating an URI . 22

By uploading a file . 23

5.2.3. To deposit a data files package . 23

5.2.4. To get the deposit metadata schema . 24

5.2.5. To submit a deposit for approval . 24

5.2.6. To approve a deposit . 24

5.3. By using a SIP. 25

5.3.1. To create a SIP . 25

5.3.2. To submit a SIP package . 25

5.3.3. To get SIP metadata schema. 26

6. Dissemination Integration . 27

6.1. To search archives . 27

6.2. To get an archive. 27

6.2.1. By archive ID . 27

6.2.2. By DOI . 28

6.3. To download an archive . 28

6.3.1. To get download status . 28

6.3.2. To prepare download. 29

6.3.3. To download archive content . 29

6.4. To export metadata with OAI-PMH . 29

7. Annexes . 31

7.1. Glossary. 31

7.2. DLCM Modules . 31

7.3. Application Roles . 32

7.4. Roles. 32

7.5. Access Levels . 33

7.6. Data Tags. 34

7.7. Data Use Policies . 36

7.8. Deposit Status . 36

7.9. Data File Categories . 37

7.10. Data File Status . 38

DLCM Solution v3.1.5, 2026-02-09

The current documentation is available in HTML or PDF.

1

DLCM-IntegrationGuide.html
DLCM-IntegrationGuide.pdf

Chapter 1. DLCM Architecture
The DLCM solution design is compliant with the OAIS model and follows current best practices of
preservation. The solution architecture is open, flexible and modular so as to be scalable,
sustainable, and to facilitate its integration with other information systems. How such integrations
can be performed constitutes the topic of this document.

1.1. DLCM Solution

1.2. OAIS Model

2

https://www.iso.org/fr/standard/57284.html

3

Chapter 2. Integration Points

2.1. For Submission
There are three ways to deposit data files into the DLCM system:

1. By submitting individual data files

2. By using a package containing one or several data files

3. Based on a SIP (Submission Information Package)

See the details in Submission Integration section.

2.2. For Dissemination
Once the data files have been submitted and archived, the research community can access them:

1. By getting directly an archive with its ID

2. By searching on archive metadata

3. By exporting the AIP (Archival Information Package) through a DIP (Dissemination Information
Package)

4. By exporting metadata with OAI-PMH protocol

See the details in Dissemination Integration section.

2.3. For Developers
• All web services are detailed in API Documentation.

• The API are available in OpenAPI format. See OpenAPI Tools. The definition is available in link:

◦ DLCM OpenAPI Specification v3.0

◦ DLCM OpenAPI Specification v3.1

• The DLCM tools is a batch tool. The documentation is available in DLCM Tools Documentation.

4

../swagger-ui.html
https://www.openapis.org/
https://openapi.tools/
openapi/dlcm-openapi-3.0.json
openapi/dlcm-openapi-3.1.json
DLCM-ToolsGuide.html

Chapter 3. REST Web Services

3.1. Overview
The DLCM APIs are RESTful web services based on the best practices. The implementation
corresponds to the third level of Leonard Richardson’s Maturity Model:

Source : (crummy.com, 2008)

More details about these concepts are available on the following links:

• https://spring.io/guides/tutorials/bookmarks/

• https://martinfowler.com/articles/richardsonMaturityModel.html

The data format of the web service is JSON,with HATEOAS & HAL support:

Source : (stateless.co, 2011)

3.1.1. URL Structure

The URL of each REST resource is constructed according to the following rule:

5

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://spring.io/guides/tutorials/bookmarks/
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.json.org/
https://en.wikipedia.org/wiki/HATEOAS
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

http(s)://<root context>/<module>/<things>

Where:

• http(s) is the protocol which can be secured depending on the installation configuration.

• <root context> is the root context of the application, defined in the configuration.

• <module> is the functional module (see DLCM Architecture): the different module names are
detailed in the DLCM Modules section in the Annexes.

• <things> is the name of the REST resource: it must be a *noun in plural form*.

The naming convention, applied only for <things>, respects the camel case syntax, with a lower case
character for the first one.

 There are some examples of root contexts in the demo environment

3.1.2. CRUD Operations

By default, for each REST resource, the CRUD actions are available like this:

HTTP verb CRUD action Collection Instance

POST Create
Used to create a new resource

✔ ✘

GET Read
Used to retrieve a resource or resource list

✔ ✔

PATCH Update No creation
Used to update an existing resource, including partial updates

✘ ✔

DELETE Delete
Used to delete an existing resource

✘ ✔


The HTTP verb for an action on a resource is POST:
http(s)://<root context>/<module>/<things>/<thingID>/<action>.

3.1.3. HTTP Status Codes

RESTful notes tries to adhere as closely as possible to standard HTTP and REST conventions in its
use of HTTP status codes.

Status code Usage

200 OK The request completed successfully

201 Created A new resource has been created successfully. The resource’s URI is
available from the response’s Location header

204 No Content An update to an existing resource has been applied successfully

400 Bad Request The request was malformed. The response body will include an error
providing further information

6

https://en.wikipedia.org/wiki/Camel_case
https://sandbox.dlcm.ch
https://sandbox.dlcm.ch
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Status code Usage

401 Unauthorized Authentication is required to access to this resource

403 Forbidden You are not allowed to access to this method for this resource

404 Not Found The requested resource did not exist

405 Method Not Allowed The requested method is not supported for this resource

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

3.1.4. Error Details

{
 "path": "http(s)://<root context>/<module>/<things>",
 "status": "BAD_REQUEST",
 "error": "Type of error",
 "message": "Message to explain the issue",
 "timeStamp": "DDD MMM YY hh:mm:ss CEST YYYY",
 "statusCode": 400
}

Contains the malformed request information, which describes the problem on the request:

• The path field is the url of the resource concerned by the problem.

• The status field is the status of the request (always 'BAD_REQUEST' in this case).

• The error field is the error that occurs on the request.

• The message field is the message that details the problem.

• The timeStamp field is the time at which the error occurred.

• The statusCode field is the status code of the request (always '400' in this case) .

In the case in which a body object is provided, the validationErrors field is also added to the fields
above. The value of this field is an array that contains for each malformed field:

• The fieldName field that contains the name of the malformed field.

• The errorMessages field array that contains the list of errors in this field.

 Example of a deposit submission with a malformed body = {}

{
 "path": "http(s)://<root context>/<module>/<things>",
 "status": "BAD_REQUEST",
 "error": "None",
 "message": "Validation failed",
 "timeStamp": "Fri May 17 11:39:15 CEST 2019",
 "validationErrors": [
 {

7

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

 "fieldName": "title",
 "errorMessages": [
 "can't be null"
]
 },
 {
 "fieldName": "description",
 "errorMessages": [
 "can't be null"
]
 },
 {
 "fieldName": "organizationalUnitId",
 "errorMessages": [
 "can't be null"
]
 }
],
 "statusCode": 400
}

 Example of a malformed deposit submission with no body

{
 "path": "http(s)://<root context>/<module>/<things>",
 "status": "BAD_REQUEST",
 "error": "Required request body is missing: ...",
 "message": "Request not readable",
 "timeStamp": "Fri May 17 12:53:29 CEST 2019",
 "statusCode": 400
}

 Example of a malformed deposit submission with a body = []

{
 "path": "http(s)://<root context>/<module>/<things>",
 "status": "BAD_REQUEST",
 "error": "JSON parse error: ...",
 "message": "Request not readable",
 "timeStamp": "Fri May 17 13:04:39 CEST 2019",
 "statusCode": 400
}

3.2. Collection
A collection of REST resources is a list of JSON objects. The list has its own structure, is paginated,

8

filterable and sortable.

The collection URL is:

http(s)://<root context>/<module>/<things>.

3.2.1. Structure

{
 "_data" : [
 { "object" : "#1" },
 { "object" : "#2" },
 { "object" : "#3" },
 { "object" : "#4" }
],
 "_page": {
 "currentPage" : 0,
 "sizePage" : 20,
 "totalPages" : 1,
 "totalItems" : 4
 },
 "_links" : {
 "self" : {
 "href" : "URL of the collection"
 },
 "module" : {
 "href" : "URL of the DLCM module"
 }
 }
}

Data Section

The Data section contains an array of JSON representations, corresponding to business objects (i.e.
things). The details of these objects can be found in the technical documentation (i.e. API
Documentation) provided with the DLCM solution.

Page Section

The Page section contains the pagination information, which describes the current position:

• The currentPage field is the page number of the current page: it starts at 0.

• The sizePage field is the size of each page: the default is set to 20, the max value is 2000.

• The totalPages field is the total number of pages for the current page size.

• The totalItems field is the total number of objects for the current selection.

9

../swagger-ui.html
../swagger-ui.html

Links Section

The Links section contains the links corresponding to the current collection. This list is dynamic and
depends on the state of the collection:

• The self link is the current URL: it is always present.

• The module link is the URL to access the current module.

• The next link is the URL to go to the next page, available only if it exists.

• The previous link is the URL to go to the previous page, available only if it exists.

• The lastCreated link is the URL to get the list sorted by creation date in descending order.

• The lastUpdated link is the URL to get the list sorted by last update date in descending order.

• Some other links could be available depending on the current resource: these links are detailed
in the API documentation of the resource.

 Example of institution list

{
 _data : [
 {
 resId : "7f9df7bb-5eab-4823-98a0-abb668731de5",
 name : "UNIGE",
 description : "Université de Genève",
 },
 {
 resId : "18284eb1-de0b-427e-9e8c-c541cb35e818",
 name : "EPFL",
 description : "Ecole Polytechnique Fédérale de Lausanne",
 },
 {
 resId : "e8a9b74d-7b84-4958-be62-9b0b1d83a360",
 name : "ETH",
 description : "ETH Zürich",
 }
],
 _page : {
 currentPage : 0,
 sizePage : 20,
 totalPages: 1,
 totalItems: 4
 },
 _links: {
 self : {
 href : "http://localhost:16105/dlcm/admin/institutions"
 },
 module : {
 href : "http://localhost:16105/dlcm/admin"
 },

10

 lastCreated : {
 href : "http://localhost:16105/dlcm/admin/institutions?sort=creation.when,desc"
 },
 lastUpdated : {
 href :
"http://localhost:16105/dlcm/admin/institutions?sort=lastUpdate.when,desc"
 }
 }
}

3.2.2. Usage

To get a list of things

The different parameters can be used individually or together.

Request http(s)://<root context>/<module>/<things>

Verb GET

Parameter(s) Name Description

size=<page size> The page size

page=<page number> The current page number

<field name>=<field
value>

To apply a filter on a field if the field is
embedded in a sub structure, the field name
must be fully named with “.” for each level:+
<sub structure name>.<field name>

sort=<field
name>[,desc]

To sort a field
By default, the sort is ascending. desc option
permits to have descending order.

Expected
Return Code

200 Success

Return Object JSON Collection object See Structure

 Examples

1. To filter by creation date:
http(s)://<root context>/<module>/<things>?sort=creation.when

2. To sort by most recent objects:
http(s)://<root context>/<module>/<things>?sort=creation.when,desc

3. To get page 10 composed of 5 elements:
http(s)://<root context>/<module>/<things>?page=10&size=5

3.3. Instance
The instance of REST resource is the instance of an object with its fields.

11

The instance URL is:

http(s)://<root context>/<module>/<things>/<thingID>.

3.3.1. Structure

{
 "creation" : {
 "when" : "Creation date & time",
 "who" : "Creation user"
 },
 "lastUpdate" : {
 "when" : "Last update date & time",
 "who" : "Last update user"
 },
 "resId" : "Object ID",
 "fields" : "Object fields...",
 "_links" : {
 "self" : {
 "href" : "URL of the object"
 },
 "list" : {
 "href" : "URL of the object collection"
 },
 "module" : {
 "href" : "URL of the DLCM module"
 },
 "Other link" : {
 "href" : "Others links of the object"
 }
 }
}

The field list elements are:

• The creation and lastUpdate fields, containing the information of the action:

◦ The when field is the date and the time, with milliseconds of the action (ex : 2018-03-
08T17:42:30.733+0100).

◦ The who field is the user id of the user who has done the action.

• The resId field is the identifier of the object: it is a UUID.

• Some other fields complete the object description: these fields are detailed in the technical
documentation of the resource.

Links Section

The links section contains a list of links of the object:

• The self link is the URL of the current object.

12

https://en.wikipedia.org/wiki/Universally_unique_identifier

• The list link is the URL pointing to the object collection.

• The module link is the URL to access the current module.

• Some other links could be available depending on the object: these links are detailed in the
technical documentation of the resource.

 Example of an institution

{
 "creation" : {
 "when" : "2018-03-08T17:42:30.733+0100",
 "who" : "user id of user xxxxxx"
 },
 "lastUpdate" : {
 "when" : "2018-03-08T17:42:30.733+0100",
 "who" : "user id of user yyyyyyy"
 },
 "resId" : "7f9df7bb-5eab-4823-98a0-abb668731de5",
 "name" : "UNIGE",
 "description" : "Université de Genève",
 "_links" : {
 "self" : {
 "href" : "http://localhost:16105/dlcm/admin/institutions/7f9df7bb-5eab-4823-
98a0-abb668731de5"
 },
 "list" : {
 "href" : "http://localhost:16105/dlcm/admin/institutions"
 },
 "module" : {
 "href" : "http://localhost:16105/dlcm/admin"
 },
 "people" : {
 "href" : "http://localhost:16105/dlcm/admin/institutions/7f9df7bb-5eab-4823-
98a0-abb668731de5/people"
 },
 "organizationalUnit" : {
 "href" : "http://localhost:16105/dlcm/admin/institutions/7f9df7bb-5eab-4823-
98a0-abb668731de5/organizationelUnits"
 }
 }
}

3.3.2. Usage

To get a resource

Request http(s)://<root context>/<module>/<things>/<thingID>

Verb GET

13

Parameter(s) Name Description

None -

Expected
Return Code

200 Success

404 Not found

Return Object JSON object See Structure

To create a new resource

Request http(s)://<root context>/<module>/<things>

Verb POST

Parameter(s) Name Description

JSON Object with
fields to set

Object in JSON format. The fields and the
structure depend on the type: see API
Documentation

Expected
Return Code

201 Created

Return Object JSON Object See Structure

To update a resource

The resource must already exist.

Request http(s)://<root context>/<module>/<things>/<thingID>

Verb PATCH

Parameter(s) Name Description

JSON Object with field
to update

Object in JSON format. The fields and the
structure depend on its type: see API
Documentation

Expected
Return Code

200 Modified

304 Not modified

404 Not found

Return Object JSON Object with
updated fields

See Structure

To delete a resource

Request http(s)://<root context>/<module>/<things>/<thingID>

Verb DELETE

Parameter(s) Name Description

None -

14

link:../swagger-ui.html
link:../swagger-ui.html
../swagger-ui.html
../swagger-ui.html

Expected
Return Code

200 Deleted

404 Not found

410 Gone

Return Object String: “OK” If success

3.4. Security

3.4.1. Authentication

All web services are secured and require authentication.

User authentication relies on Switch AAI which is a Single Sign-On (SSO), based on Shibboleth.

Access to Web services relies on OAuth 2.0 access delegation.

OAuth 2.0 is a protocol allowing third-party applications to grant limited access to an HTTP service,
either on behalf of a resource or by allowing the third-party application to obtain access on its own.
It uses the authorization code grant implementation.

3.4.2. Application Roles

15

https://www.shibboleth.net/
https://tools.ietf.org/html/rfc6749

The features are organized in:

• Functional features list for an user

◦ Organizational Units, Deposits, Search, etc…

• Global settings list for an administrator

◦ Organizational units, People, Institutions, Funding agencies, Submission policies,
Preservation policies, Licenses, etc…

• Security parameters list for a root

◦ System Configuration, User Roles, Users, etc…

See details in Application Roles.

3.4.3. Roles

16

A role can be inherited from an institution if an organizational unit is linked to this institution. For
example, if an manager of an institution or an administrator gives the steward role to an user, this
user will became the steward of all organizational units of this institution.

See details in Roles.

Organizational Unit Definition

• An organizational unit is a logical entity where managers can define security rules:

◦ Who can submit deposits?

◦ Who can download archives?

• Could be a research project, a laboratory, a department or any other organizational group of
researchers.

17

Chapter 4. Data Access

When data must be archived, at the ingestion, some questions must be answered:

① Who can access the archive? ⇒ Define the correct level of Access Levels

② Are there sensitive data in the archive? ⇒ Define the correct tag of Data Tags

③ What are terms & conditions to use the archive? ⇒ Define the correct policy of Data Use Policies

④ What are obligations to impose for using the archive? ⇒ Choose the license or specify the data
use agreement

4.1. Data Access Scales
Each concept (access level, data tag or data use policy) have a restriction scale to control the access
to the archives: from less to more restrictive.

18

4.2. Data Access Compatibility
The compatibility between those concepts are described in the following matrix.

19

Chapter 5. Submission Integration

5.1. Overview

The ingestion process consists either in the creation of a deposit based on a wizard-like assisted
approach, or in using a ready-to-use SIP.

5.2. Wizard-like assisted deposit
The deposit operation consists in gathering all data files and the information necessary to create a
SIP package. The objective of the wizard is to structure the deposit and to categorize each data file:

20

The description of each category is detailed at the Data File Categories section in the Annexes.

The data file assignment to a deposit can be done file-by-file (mode ❶) or by batch (mode ❷):

5.2.1. To create a deposit

Request http(s)://<root context>/preingest/deposits

Verb POST

21

Parameter(s) Name Description

Deposit JSON Object See Deposit section in API Documentation

Expected
Return Code

201 Created

Return
Object

Deposit JSON Object See Deposit section in API Documentation

Roles Creator (see Roles)

 Deposit example

The minimal set of information for a deposit is:

{
 "organizationalUnitId" : "Organizational unit ID of the data set",
 "title" : "Data set title",
 "year" : 2018,
 "description" : "Data set description"
}

5.2.2. To deposit data files

To add data files to a deposit, the first option (mode ❶) is to deposit them one-by-one.

By creating an URI

It’s possible to provide a URI (useful for large files).

Request http(s)://<root context>/preingest/deposits/<DepositID>/data

Verb POST

Parameter(s) Name Description

Data File JSON Object See Data File section in API Documentation

Expected
Return Code

201 Created

Return
Object

Data File JSON Object See Data File section in API Documentation

Roles Creator (see Roles)

The effective download of the referenced data (see API Documentation) is done asynchronously by
the “Pre-Ingest” module, which supports the file (for files on local file systems), http and https
protocols.

22

../swagger-ui.html#preingest
../swagger-ui.html#preingest
../swagger-ui.html#preingest
../swagger-ui.html#preingest
../swagger-ui.html#preingest

By uploading a file

Request http(s)://<root context>/preingest/deposits/<DepositID>/upload

Verb POST

Content-type multipart/form-data

Parameter(s) Name Description

file Data file to upload

category (optional) Data file category (see Data File Categories
section in the Annexes)

type (optional) Data file sub-category (see Data File Categories
section in the Annexes)

folder (optional) Sub-folders of data file

Expected
Return Code

201 Created

Return Object Data File JSON Object See Data File section in API Documentation

Roles Creator (see Roles)

If the data file is the descriptive metadata of the dataset, it must respect the deposit metadata
schema. If not, the data file will have a status In-Error.

5.2.3. To deposit a data files package

The second option (mode ❷) is to add data files in a deposit by batches. The batch mode supports zip
files, containing all the data files to upload, including sub-folders.

Request http(s)://<root context>/preingest/deposits/<DepositID>/upload-archive

Verb POST

Content-type multipart/form-data

Parameter(s) Name Description

file Zip file which contains data files

category (optional) Data file category (see Data File Categories
section in the Annexes)

type (optional) Data file sub-category (see Data File Categories
section in the Annexes)

Expected
Return Code

201 Created

Return
Object

Array of Data file
JSON Object

See Data File section in API Documentation

Roles Creator (see Roles)

23

../swagger-ui.html#preingest
../swagger-ui.html#preingest

5.2.4. To get the deposit metadata schema

Request http(s)://<root context>/preingest/deposit/schema

Verb GET

Parameter(s) Name Description

None -

Expected
Return Code

200 Success

Return
Object

Descriptive Metadata
XML schema

XML schema file

Roles All (see Roles)

5.2.5. To submit a deposit for approval

This step is optional. It depends of submission policy if an approval is expected.

Request http(s)://<root context>/preingest/deposits/<DepositID>/submit-for-
approval

Verb POST

Parameter(s) Name Description

None -

Expected
Return Code

200 Modified

304 Not modified

404 Not found

Return
Object

Result JSON Action result
{
"message": "Deposit status changed
successfully",
"resId": "<DepositID>",
"status": "EXECUTED"
}

Roles Creator (see Roles)

5.2.6. To approve a deposit

Request http(s)://<root context>/preingest/deposits/<DepositID>/approve

Verb POST

Parameter(s) Name Description

None -

24

Expected
Return Code

200 Modified

304 Not modified

404 Not found

Return
Object

Result JSON Action result
{
"message": "Deposit status changed
successfully",
"resId": "<DepositID>",
"status": "EXECUTED"
}

Roles Approver (see Roles)

5.3. By using a SIP

5.3.1. To create a SIP

Request http(s)://<root context>/ingest/sip

Verb POST

Parameter(s) Name Description

SIP JSON Object See SIP section in API Documentation

Expected
Return Code

201 Created

Return
Object

SIP JSON Object See SIP section in API Documentation

Roles Creator (see Roles)

 SIP example

The minimal set of information for an SIP is:

{
 "info" : {
 organizationalUnitId" : "Organizational unit ID of the SIP",
 "name" : "Name of the SIP",
 "description" : "Description of the SIP"
 }
}

5.3.2. To submit a SIP package

Request http(s)://<root context>/ingest/sip/<sipID>/upload

Verb POST

25

../swagger-ui.html#ingest
../swagger-ui.html#ingest

Content-type multipart/form-data

Parameter(s) Name Description

Zip file The Zip file must contain a metadata XML file
and at least one data file.

Expected
Return Code

201 Created

Return
Object

Data File JSON Object See Data File section in API Documentation

Roles Creator (see Roles)

The SIP metadata file must be in XML and respect the SIP metadata schema.

5.3.3. To get SIP metadata schema

Request http(s)://<root context>/ingest/sip/schema

Verb GET

Parameter(s) Name Description

None -

Expected
Return Code

200 Success

Return
Object

SIP DLCM Metadata XML
schema

XML schema file

Roles All (see Roles)

26

../swagger-ui.html#ingest

Chapter 6. Dissemination Integration

6.1. To search archives

Request http(s)://<root context>/access/metadata/search?query=<query>

Verb GET

Parameter(s) Name Description

Query Query criteria

Expected
Return Code

200 Success

Return
Object

Collection JSON Object List of Archive information & DataCite metadata
(see [archive-example]) with pagination

Roles Public (see Roles)



Query examples:

• criterion1 criterion2 ⇒ criterion1 or criterion2

• criterion1 AND criterion2 ⇒ criterion1 and criterion2

6.2. To get an archive

6.2.1. By archive ID

Request http(s)://<root context>/access/metadata/<archiveID>

Verb GET

Parameter(s) Name Description

None -

Expected
Return Code

200 Success

Return
Object

Archive Public
Metadata JSON Object

Archive information & DataCite metadata (see
[archive-example])

Roles Public (see Roles)

 Archive public metadata example

{
 "resId": "<archiveID>",
 "index": "<index name>",
 "type": "metadata",
 "metadata": {

27

 "aip-disposition-approval": "<true/false>",
 "aip-organizational-unit": "<organizational unit ID>",
 "aip-retention": "<retention duration in days",
 "aip-retention-end": "<retention end date>",
 "aip-unit": "<true/false>",
 "aip-size": "<archive size>",
 "creation": "<creation date>"
 "datacite.xml": "<DataCite XML>",
 "aip-container": "BAG_IT",
 "datacite": {
 <DataCite JSON>
 }
 }
}

6.2.2. By DOI

Request http(s)://<root context>/access/metadata/search-doi?doi=<DOI>

Verb GET

Parameter(s) Name Description

DOI DOI to search

Expected
Return Code

200 Success

Return
Object

Archive Public
Metadata JSON Object

Archive information & DataCite metadata (see
[archive-example])

Roles Public (see Roles)

6.3. To download an archive
To download an archive, several steps are needed:

1. To check if a download request exists and to know its status: To get download status

2. To create a download request: To prepare download

3. To download the archive: To download archive content

6.3.1. To get download status

Request http(s)://<root context>/access/metadata/<archiveID>/download-status

Verb GET

Parameter(s) Name Description

None -

28

Expected
Return Code

200 Success

404 Not found ⇒ To prepare download

Return
Object

Download Status SUBMITTED Download query created
IN_ERROR Download query in error
IN_PREPARATION Preparing download query
DOWNLOADING Downloading AIP
IN_DISSEMINATION_PREPARATION Preparing DIP
READY Download query completed ⇒ To
download archive content

Roles Public (see Roles)

6.3.2. To prepare download

Request http(s)://<root context>/access/metadata/<archiveID>/prepare-download

Verb POST

Parameter(s) Name Description

None -

Expected
Return Code

202 Accepted

Return
Object

-

Roles Public (see Roles)

6.3.3. To download archive content

Request http(s)://<root context>/access/metadata/<archiveID>/download

Verb GET

Parameter(s) Name Description

None -

Expected
Return Code

200 Success

Return
Object

Archive File

Roles Public (see Roles)

6.4. To export metadata with OAI-PMH
The OAI-PMH provider of DLCM solution supports version 2.0 of the protocol for metadata
harvesting. The specifications are detailed on the Open Archives Initiative website.

29

https://www.openarchives.org/OAI/openarchivesprotocol.html

Request http(s)://<root context>/access/oai-provider/oai

Verb GET or POST with content-type application/x-www-form-urlencoded

Parameter(s) Name Description

OAI parameters See OAI-PMH specifications.

smartView=dlcm_oai2.xs
l

Optional parameter to display OAI XML in a
structured way, with XML transformation to
generate HTML.

Expected
Return Code

200 Success

503 Service unavailable, i.e. the Data Management
module is not running

Return
Object

OAI-PMH XML data OAI-PMH XML data. See OAI-PMH specifications

Roles Public (see Roles)

30

https://www.openarchives.org/OAI/openarchivesprotocol.html#ProtocolMessages
https://www.openarchives.org/OAI/openarchivesprotocol.html#ProtocolMessages

Chapter 7. Annexes

7.1. Glossary

Acronym Description Source

AIC Archival Information Collection OAIS

AIP Archival Information Package (i.e. Archive) OAIS

AIU Archival Information Unit OAIS

API Application Programming Interface Software

CRUD Create Read Update Delete Software

Deposit Research data deposit DLCM

DIP Dissemination Information Package OAIS

HAL Hypertext Application Language Software

HATEOAS Hypermedia As The Engine Of Application State Software

IP Information Package OAIS

JSON JavaScript Object Notation Software

OAIS Open Archival Information System OAIS

REST REpresentational State Transfer Software

SIP Submission Information Package OAIS

SOA Service Oriented Architecture Software

7.2. DLCM Modules

Module Description REST Name

Pre-Ingest Pre-Ingest module to prepare a deposit in SIP preingest

Ingest Ingest module to check an SIP and to transform
it into an AIP

ingest

Archival Storage Archival Storage module to check an AIP and to
store it

archival-storage

Data Mgmt Data Management module to index metadata data-mgmt

Access Access module to manage queries/request and to
generate a DIP

access

Preservation Planning Preservation Planning module to manage
preservation activities

preservation-planning

Admin Administration module to manage general
settings

admin

31

7.3. Application Roles

Icon Application Role Description

ROOT A root is the super administrator of the application.
⇒ He has access to everything.

ADMIN An administrator can configure the application by
defining new parameters, like license or preservation
policy.
⇒ He has access to global settings of the application.

USER An user is a person who have to use the application.
⇒ He has access to the preservation space, based on the
permission he has at institution or organizational unit
level.

7.4. Roles

Icon Role

Within an institution

Within an organizational unit

Manager He can manage users of this
institution.
He can create organizational units
for this institution.

He can manage users of this
organizational unit,
plus the same rights as a steward.

Steward He has the steward role for all
organizational units of the
institution.

He has the steward role for the
organizational unit.
He can manage deposits and
archives,
plus the same rights as an approver.

Approver He has the approver role for all
organizational units of the
institution.

He has the approver role for the
organizational unit.
He can approve or reject a
submitted deposit, plus the same
rights as a creator.

32

Creator He has the creator role for all
organizational units of the
institution.

He has the creator role for the
organizational unit.
He can initiate, edit & submit
deposits, add data files in deposits,
plus the same rights as a visitor.

Visitor He has the visitor role for all
organizational units of the
institution.

He has the visitor role for the
organizational unit.
He can download restricted
archives,
plus the same rights as user.

User A user is an authenticated person
(with a login/password) on the
application.
He has no permission on any
institution.

He has no permission on any
organizational unit.
He can download closed archives, if
he asked a access request and a
steward have accepted the request.
plus the same rights as public.

Public A public is not authenticated on the
application.
He has no permission on any
institution.

He has no permission on any
organizational unit.
He can download public archives,
which are Open Access.

7.5. Access Levels

Icon Access Level Description

PUBLIC The archive is accessible to everyone
⇒ Open access.

RESTRICTED The archive is accessible to team members (i.e., Org. Unit)
⇒ Trusted parties.

CLOSED The archive is accessible case by case thank to access
control list (ACL)
⇒ Individuals.

33

7.6. Data Tags

Icon Tag Type Description Trans
fer

Stora
ge

Access Requi
reme

nt
Suppo

rt

Acces
s

Level
Comp
atibili

ty

 UNDEFINED Not defined
Data sensitivity not set to
support previous archives.

- - - Suppor
ted

All

 BLUE Public
Non-confidential
information, stored and
shared freely.

Clear Clear Open Suppor
ted

All

 GREEN Controlled public
Not harmful personal
information, shared with
some access control.

Clear Clear Email, OAuth
verified
registration

Suppor
ted

Restri
cted
and

Closed
only

 YELLOW Accountable
Potentially harmful personal
information, shared with
loosely verified and/or
approved recipients.

Encryp
ted

Clear Password,
Registered ,
Approval,
click-through
DUA

Suppor
ted

Restri
cted
and

Closed
only

 ORANGE More accountable
Sensitive personal
information, shared with
verified and/or approved
recipients under agreement.

Encryp
ted

Encryp
ted

Password,
Registered,
Approval,
signed DUA

Suppor
ted

If
Encryp
tion is
enable
d on

storag
e

device

Closed
only

34

Icon Tag Type Description Trans
fer

Stora
ge

Access Requi
reme

nt
Suppo

rt

Acces
s

Level
Comp
atibili

ty

 RED Fully accountable
Very sensitive personal
information, shared with
strong verification of
approved recipients under
signed agreement.

Encryp
ted

Encryp
ted

Two-factor
Authenticatio
n, Registered,
Approval,
signed DUA

Suppor
ted

If
Encryp
tion is
enable
d on

storag
e

device

Closed
only

 CRIMSON Maximum restricted
Maximum sensitive, explicit
permission for each
transaction, strong
verification of approved
recipients under signed
agreement.

Encryp
ted

Multi-
encryp
ted

Two-factor
Authenticatio
n, Registered,
Approval,
signed DUA

Partia
lly

Suppor
ted

If
Encryp
tion is
enable

on
storag

e
device

Multi-
encryp
ted
not

suppo
rted
yet

Closed
only

 DUA = Data Use Agreement

Sources:

• Sharing Sensitive Data with Confidence: The Datatags System

35

https://techscience.org/a/2015101601/

7.7. Data Use Policies

Icon Data Use Policy Description

None No data use policy. No constraint.

License A license is mandatory.

Click-through DUA A DUA is mandatory. It is stored in the archive and is
approved when the user click to request access.

Signed DUA A DUA is mandatory. It is stored in the archive. It must be
downloaded, signed and provided when the user request
access.

External DUA A DUA is mandatory. But, it is managed and stored
externally, so not in the archive. The control is done
outside the application.

 DUA = Data Use Agreement

7.8. Deposit Status

Status Description

APPROVED The deposit has been approved.

CHECKED The deposit has been checked.

CLEANED The deposit has been cleaned: all date files have been purged.

CLEANING A clean job is currently running.

36

Status Description

COMPLETED The deposit has been archived.

CREATED The deposit has been created.

IN_ERROR The deposit is in error. An action must be done to fix the deposit.

IN_PROGRESS The deposit is open to add data files.

IN_VALIDATION The deposit must be validated.

REJECTED The validation process has rejected the deposit.

SUBMITTED The deposit process is started.

7.9. Data File Categories

Category Sub-Category Description

Primary Primary Data category

Observational Data captured in real-time, usually
irreplaceable. For example, sensor data, survey
data, sample data, neuro-images.

Experimental Data from lab equipment, often reproducible,
but can be expensive to reproduce. For example,
gene sequences, chromatograms, and toroid
magnetic field data.

Simulation Data generated from test models. The model and
its parameters are as important as the result and
are also part of the data. For example, climate
models, economic models, etc.

Derived Data derived from other data. Generally
reproducible but can also be expensive (for
instance parameters of LLM). For example, text
and data mining, compiled database, 3D models,
etc.

Reference A (static or organic) conglomeration or
collection of smaller (peer-reviewed) datasets,
most probably published and curated. For
example, gene sequence databanks, chemical
structures, or spatial data portals. It can be
expensive to create.

Digitalized Digital version of analogue objects. For example,
manuscripts, books, audio etc.

Secondary Secondary Data category

37

Category Sub-Category Description

Publication Research publication or article

DataPaper Research data paper

Documentation Other documentation

Software Software category

Code Code or programs

Binaries Binaries or executables

VirtualMachine Images of virtual machines

Administrative Administrative category

Document All kinds of documents

WebSite Web sites

Other Others types of files

Package DLCM Package category

InformationPackage DLCM Package (internal used only)

Metadata DLCM metadata in XML format

CustomMetadata Specific metadata of a research in JSON or XML
format

UpdatedMetadata DLCM updated metadata in XML format

UpdatePackage DLCM Updated Package (internal used only)

Internal DLCM Archive category

DatasetThumbnail Dataset Thumbnail (for archive version < 3.1)

ArchiveThumbnail Archive Thumbnail (for archive version >= 3.1)

ArchiveReadme Archive README

ArchiveDataUseAgreem
ent

Data Use Agreement (DUA) for archives with
sensitive data



The categories are dependent on the configuration.

• The categories, Primary, Secondary & Software, are available if research
data archiving is enable.

• The category, Administrative, is available if administrative data archiving is
enable.

7.10. Data File Status

38

Status Description Action

CHANGE_DATA_CA
TEGORY

An update of the data category or of the data
type is in progress.

n/a

CHANGE_RELATIV
E_LOCATION

An update of the relative location is in progress. n/a

CLEANED The data file is purged after a clean job. n/a

CLEANING A clean job is currently running. n/a

CREATED The data file has been created. n/a

EXCLUDED_FILE The data file has a forbidden format. This data file must be deleted
before submitting deposit.

FILE_FORMAT_ID
ENTIFIED

The file format identification ran successfully. n/a

FILE_FORMAT_SK
IPPED

The file format identification was skipped
because of the file size.

n/a

FILE_FORMAT_UN
KNOWN

The file format identification failed. n/a

IGNORED_FILE The data file has a format which needs a action. This data file must be deleted or
validated before submitting
deposit.

IN_ERROR The data file is in error. An action must be done to fix
the data file.

PROCESSED The data file has been processed: downloaded or
copied.

n/a

READY The data file processing is completed. n/a

RECEIVED The data file is created. n/a

TO_PROCESS The data file is created, before to be processed. n/a

VIRUS_CHECKED The virus check ran successfully: no virus. n/a

VIRUS_SKIPPED The virus check was skipped because of the file
size.

n/a

39

	DLCM Integration Guide
	Table of Contents
	Chapter 1. DLCM Architecture
	1.1. DLCM Solution
	1.2. OAIS Model

	Chapter 2. Integration Points
	2.1. For Submission
	2.2. For Dissemination
	2.3. For Developers

	Chapter 3. REST Web Services
	3.1. Overview
	3.1.1. URL Structure
	3.1.2. CRUD Operations
	3.1.3. HTTP Status Codes
	3.1.4. Error Details

	3.2. Collection
	3.2.1. Structure
	Data Section
	Page Section
	Links Section

	3.2.2. Usage
	To get a list of things

	3.3. Instance
	3.3.1. Structure
	Links Section

	3.3.2. Usage
	To get a resource
	To create a new resource
	To update a resource
	To delete a resource

	3.4. Security
	3.4.1. Authentication
	3.4.2. Application Roles
	3.4.3. Roles
	Organizational Unit Definition

	Chapter 4. Data Access
	4.1. Data Access Scales
	4.2. Data Access Compatibility

	Chapter 5. Submission Integration
	5.1. Overview
	5.2. Wizard-like assisted deposit
	5.2.1. To create a deposit
	5.2.2. To deposit data files
	By creating an URI
	By uploading a file

	5.2.3. To deposit a data files package
	5.2.4. To get the deposit metadata schema
	5.2.5. To submit a deposit for approval
	5.2.6. To approve a deposit

	5.3. By using a SIP
	5.3.1. To create a SIP
	5.3.2. To submit a SIP package
	5.3.3. To get SIP metadata schema

	Chapter 6. Dissemination Integration
	6.1. To search archives
	6.2. To get an archive
	6.2.1. By archive ID
	6.2.2. By DOI

	6.3. To download an archive
	6.3.1. To get download status
	6.3.2. To prepare download
	6.3.3. To download archive content

	6.4. To export metadata with OAI-PMH

	Chapter 7. Annexes
	7.1. Glossary
	7.2. DLCM Modules
	7.3. Application Roles
	7.4. Roles
	7.5. Access Levels
	7.6. Data Tags
	7.7. Data Use Policies
	7.8. Deposit Status
	7.9. Data File Categories
	7.10. Data File Status

