DLCM Integration Guide

Table of Contents

1. DLCM Architecture
1.1. DLCM Solution
1.2. OAIS Model
2. Integration Points
2.1. For Submission
2.2. For Dissemination
2.3. For Developers
3. REST Web Services
3.1. Overview
3.1.1. URL Structure
3.1.2. CRUD Operations
3.1.3. HTTP Status Codes
3.1.4. Error Details
3.2. Collection
3.2.1. Structure
Data Section
Page Section
Links Section
3.2.2. Usage
To get a list of things
3.3. Instance
3.3.1. Structure
Links Section
3.3.2. Usage
To get a resource

To create a new resource

To update a resource
To delete a resource
3.4. Security
3.4.1. Authentication
3.4.2. Application Roles
3.4.3. Roles

Organizational Unit Definition

4. Data Access
4.1. Data Access Scales

4.2. Data Access Compatibility

5. Submission Integration

5.1. Overview

© © © 00 ~J O O U1 U1 U1 = b oD NN

[N I N R e N e T T e e e T e T e T e e T e T O e e S S N T N SN =
S O W 00 0 N O U1 U1 U b b b W W NN R R, RO

5.2. Wizard-like assisted deposit
5.2.1. To create a deposit
5.2.2. To deposit data files
By creating an URI
By uploading a file
5.2.3. To deposit a data files package
5.2.4. To get the deposit metadata schema
5.2.5. To submit a deposit for approval
5.2.6. To approve a deposit
5.3. By using a SIP
5.3.1. To create a SIP
5.3.2. To submit a SIP package
5.3.3. To get SIP metadata schema
6. Dissemination Integration
6.1. To search archives
6.2. To get an archive
6.2.1. By archive ID
6.2.2. By DOI
6.3. To download an archive
6.3.1. To get download status
6.3.2. To prepare download
6.3.3. To download archive content
6.4. To export metadata with OAI-PMH
7. Annexes
7.1. Glossary
7.2. DLCM Modules
7.3. Application Roles
7.4. Roles
7.5. Access Levels
7.6. Data Tags
7.7. Data Use Policies
7.8. Deposit Status
7.9. Data File Categories
7.10. Data File Status

20
21
22
22
23
23
24
24
24
25
25
25
26
27
27
27
27
28
28
28
29
29
29
31
31
31
32
32
33
34
36
36
37
38

DLCM Solution v3.1.5, 2026-02-09

(/o—o DLCM

The current documentation is available in HTML or PDF.

DLCM-IntegrationGuide.html
DLCM-IntegrationGuide.pdf

Chapter 1. DLCM Architecture

The DLCM solution design is compliant with the OAIS model and follows current best practices of
preservation. The solution architecture is open, flexible and modular so as to be scalable,
sustainable, and to facilitate its integration with other information systems. How such integrations
can be performed constitutes the topic of this document.

1.1. DLCM Solution

[User Web Portal 1
@ Submission Dissemination

i st v Serves |

Eﬂ Mofju]e Module %o

I

i
v v

E E MariaDB Y, OQAI-PMH
m/ MHSCIKL

Common Modules

RESTful Web Services HE D it

Archival

c
= !
‘5 1
Z T i
i 1
o ! ¥ ; [
¢ i %y elastic o
/) o
File Object Storage DLCM®
Storage o3 DLCM AP Tool APIs P 02020
— ————— >

1.2. OAIS Model

https://www.iso.org/fr/standard/57284.html

Open Archival Information System
ISO 14721

OAIS

Preservation Planning

Data Management

SIP AIP Access DIP

Archival Storage

Administration

e |

(o]

°Oo DLCM®

o ©2020

Chapter 2. Integration Points

2.1. For Submission

There are three ways to deposit data files into the DLCM system:

1. By submitting individual data files
2. By using a package containing one or several data files

3. Based on a SIP (Submission Information Package)

See the details in Submission Integration section.

2.2. For Dissemination
Once the data files have been submitted and archived, the research community can access them:

1. By getting directly an archive with its ID
2. By searching on archive metadata

3. By exporting the AIP (Archival Information Package) through a DIP (Dissemination Information
Package)

4. By exporting metadata with OAI-PMH protocol

See the details in Dissemination Integration section.

2.3. For Developers

» All web services are detailed in API Documentation.

* The API are available in OpenAPI format. See OpenAPI Tools. The definition is available in link:
o DLCM OpenAPI Specification v3.0
o DLCM OpenAPI Specification v3.1

e The DLCM tools is a batch tool. The documentation is available in DLCM Tools Documentation.

../swagger-ui.html
https://www.openapis.org/
https://openapi.tools/
openapi/dlcm-openapi-3.0.json
openapi/dlcm-openapi-3.1.json
DLCM-ToolsGuide.html

Chapter 3. REST Web Services

3.1. Overview

The DLCM APIs are RESTful web services based on the best practices. The implementation
corresponds to the third level of Leonard Richardson’s Maturity Model:

o
Glory of REST /

Level 3: Hypermedia Controls

Level 1: Resources
Level 0: The Swamp of POX

Source : (crummy.com, 2008)

More details about these concepts are available on the following links:

* https://spring.io/guides/tutorials/bookmarks/

* https://martinfowler.com/articles/richardsonMaturityModel.html

The data format of the web service is JSON,with HATEOAS & HAL support:

Resource

el | href

{ plain old JSON properties } |_| n kS

embedded resources

o—]

Source : (stateless.co, 2011)

3.1.1. URL Structure

The URL of each REST resource is constructed according to the following rule:

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://spring.io/guides/tutorials/bookmarks/
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.json.org/
https://en.wikipedia.org/wiki/HATEOAS
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

http(s)://<root context>/<module>/<things>

Where:

http(s) is the protocol which can be secured depending on the installation configuration.
* <root context> is the root context of the application, defined in the configuration.

e <module> is the functional module (see DLCM Architecture): the different module names are
detailed in the DL.CM Modules section in the Annexes.

<things> is the name of the REST resource: it must be a *noun in plural form*.

The naming convention, applied only for <things>, respects the camel case syntax, with a lower case
character for the first one.

(o . .
O There are some examples of root contexts in the demo environment
-

3.1.2. CRUD Operations

By default, for each REST resource, the CRUD actions are available like this:

HTTP verb CRUD action Collection Instance

POST Create 0 0

Used to create a new resource

GET Read 0 0

Used to retrieve a resource or resource list

PATCH Update No creation 0 0

Used to update an existing resource, including partial updates

DELETE Delete 0 0

Used to delete an existing resource

o The HTTP verb for an action on a resource is POST:
http(s)://<root context>/<module>/<things>/<thingID>/<action>.

3.1.3. HTTP Status Codes

RESTful notes tries to adhere as closely as possible to standard HTTP and REST conventions in its
use of HTTP status codes.

Status code Usage
200 0K The request completed successfully
201 Created A new resource has been created successfully. The resource’s URI is

available from the response’s Location header
204 No Content An update to an existing resource has been applied successfully

400 Bad Request The request was malformed. The response body will include an error
providing further information

https://en.wikipedia.org/wiki/Camel_case
https://sandbox.dlcm.ch
https://sandbox.dlcm.ch
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Status code Usage
407 Unauthorized Authentication is required to access to this resource
403 Forbidden You are not allowed to access to this method for this resource
404 Not Found The requested resource did not exist

405 Method Not Allowed The requested method is not supported for this resource

https://en.wikipedia.org/wiki/List_of HTTP_status_codes

3.1.4. Error Details

{
"path": "http(s)://<root context>/<module>/<things>",
"status": "BAD_REQUEST",
"error": "Type of error",
"message": "Message to explain the issue",
"timeStamp": "DDD MMM YY hh:mm:ss CEST YYYY",
"statusCode": 400

}

Contains the malformed request information, which describes the problem on the request:

* The path field is the url of the resource concerned by the problem.

» The status field is the status of the request (always 'BAD_REQUEST" in this case).

* The error field is the error that occurs on the request.

» The message field is the message that details the problem.

* The timeStamp field is the time at which the error occurred.

» The statusCode field is the status code of the request (always '400' in this case) .
In the case in which a body object is provided, the validationErrors field is also added to the fields
above. The value of this field is an array that contains for each malformed field:

* The fieldName field that contains the name of the malformed field.

* The errorMessages field array that contains the list of errors in this field.

@ Example of a deposit submission with a malformed body = {}
w

"path": "http(s)://<root context>/<module>/<things>",
"status": "BAD_REQUEST",

"error": "None",

"message": "Validation failed",

"timeStamp": "Fri May 17 11:39:15 CEST 2019",
"validationErrors": [

{

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

"fieldName": "title",
"errorMessages": [
"can't be null"

]
},
{
"fieldName": "description"”,
"errorMessages": [
“can't be null"
]
b
{
"fieldName": "organizationalUnitId",
"errorMessages": [
“can't be null"
]
}
1,
"statusCode": 400
}
@ Example of a malformed deposit submission with no body
{
"path": "http(s)://<root context>/<module>/<things>",
"status": "BAD_REQUEST",
"error": "Required request body is missing: ...",
"message": "Request not readable",
"timeStamp": "Fri May 17 12:53:29 CEST 2019",
"statusCode": 400
}
@ Example of a malformed deposit submission with a body =[]
{
"path": "http(s)://<root context>/<module>/<things>",
"status": "BAD_REQUEST",
“error": "JSON parse error: ...",
"message": "Request not readable",
"timeStamp": "Fri May 17 13:04:39 CEST 2019",
"statusCode": 400
¥

3.2. Collection

A collection of REST resources is a list of JSON objects. The list has its own structure, is paginated,

filterable and sortable.
The collection URL is:

http(s)://<root context>/<module>/<things>.

3.2.1. Structure

{
" data" : [
{ "object" : "#1" },
{ "object" : "#2" },
{ "object" : "#3" },
{ "object" : "#4" }

1]

"_page": {
"currentPage" : 0,
"sizePage" : 20,
“totalPages" : 1,
"totalltems" : 4

H

" links" : {

"self" : {
"href" : "URL of the collection"
Iy
"module" : {
"href" : "URL of the DLCM module"
}
}
}

Data Section

The Data section contains an array of JSON representations, corresponding to business objects (i.e.
things). The details of these objects can be found in the technical documentation (i.e. API
Documentation) provided with the DLCM solution.

Page Section

The Page section contains the pagination information, which describes the current position:

* The currentPage field is the page number of the current page: it starts at 0.

The sizePage field is the size of each page: the default is set to 20, the max value is 2000.

The totalPages field is the total number of pages for the current page size.

* The totalltems field is the total number of objects for the current selection.

../swagger-ui.html
../swagger-ui.html

Links Section

The Links section contains the links corresponding to the current collection. This list is dynamic and
depends on the state of the collection:

{

10

The selflink is the current URL: it is always present.

The module link is the URL to access the current module.

The next link is the URL to go to the next page, available only if it exists.

The previous link is the URL to go to the previous page, available only if it exists.

The lastCreated link is the URL to get the list sorted by creation date in descending order.
The lastUpdated link is the URL to get the list sorted by last update date in descending order.

Some other links could be available depending on the current resource: these links are detailed
in the API documentation of the resource.

(o
O Example of institution list
-

~data : [
{
resId : "7f9df7bb-5eab-4823-98a0-abb668731de5",
name : "UNIGE",
description : "Université de Genéve",

I
{
resId : "18284eb1-de@b-427e-9e8c-c541cb35e818",
name : "EPFL",
description : "Ecole Polytechnique Fédérale de Lausanne",
I
{

resId : "e8a9b74d-7b84-4958-be62-9b0b1d833360",
name : "ETH",
description : "ETH Zirich",
}
1,
_page : {
currentPage : 0,
sizePage : 20,
totalPages: 1,
totalltems: 4

Jg
_links: {
self : {
href : "http://localhost:16105/d1lcm/admin/institutions”
1
module : {
href : "http://localhost:16105/d1cm/admin"
Iy

lastCreated : {
href : "http://localhost:16105/d1lcm/admin/institutions?sort=creation.when,desc"
I
lastUpdated : {
href :
"http://localhost:16105/d1lcm/admin/institutions?sort=1astUpdate.when,desc"
}
}
}

3.2.2. Usage

To get a list of things

The different parameters can be used individually or together.

Request http(s)://<root context>/<module>/<things>
Verb GET
Parameter(s) Name Description
size=<page size> The page size
page=<page number> The current page number

<field name>=<field To apply a filter on a field if the field is

value> embedded in a sub structure, the field name
must be fully named with “” for each level:+
<sub structure name>.<field name>

sort=<field To sort a field

name>[, desc] By default, the sort is ascending. desc option
permits to have descending order.

Expected 200 Success
Return Code
Return Object JSON Collection object See Structure
O Examples
w

1. To filter by creation date:
http(s)://<root context>/<module>/<things>?sort=creation.when

2. To sort by most recent objects:
http(s)://<root context>/<module>/<things>?sort=creation.when,desc

3. To get page 10 composed of 5 elements:
http(s)://<root context>/<module>/<things>?page=10&size=5

3.3. Instance

The instance of REST resource is the instance of an object with its fields.

11

The instance URL is:

http(s)://<root context>/<module>/<things>/<thingID>.

3.3.1. Structure

{
"creation" : {
"when" : "Creation date & time",
"who" : "Creation user"
H
"lastUpdate" : {
"when" : "Last update date & time",
"who" : "Last update user"
I
"resId" : "Object ID",
"fields" : "Object fields...",
" Tinks" : {
"self" : {
"href" : "URL of the object"
b
"list" : {
"href" : "URL of the object collection”
Jr
"module" : {
"href" : "URL of the DLCM module"
Iy
"Other 1link" : {
"href" : "Others links of the object"
}
}
}

The field list elements are:

* The creation and lastUpdate fields, containing the information of the action:

o The when field is the date and the time, with milliseconds of the action (ex : 2018-03-
08T17:42:30.733+0100).

o The who field is the user id of the user who has done the action.
» The reslId field is the identifier of the object: it is a UUID.

» Some other fields complete the object description: these fields are detailed in the technical
documentation of the resource.

Links Section

The links section contains a list of links of the object:

* The selflink is the URL of the current object.

12

https://en.wikipedia.org/wiki/Universally_unique_identifier

* The list link is the URL pointing to the object collection.
* The module link is the URL to access the current module.

* Some other links could be available depending on the object: these links are detailed in the
technical documentation of the resource.

(o . . .
O Example of an institution
-

"creation" : {
"when" : "2018-03-08T17:42:30.733+0100",
"who" : "user id of user xxxxxx"

H

"lastUpdate" : {
"when" : "2018-03-08T17:42:30.733+0100",
"who" : "user id of user yyyyyyy"

b
"resId" : "7f9df7bb-5eab-4823-98a0-abb668731de5",

"name" : "UNIGE",

"description” : "Université de Geneve",
" 1inks" : {
"self" : {

"href" : "http://localhost:16105/dlcm/admin/institutions/7f9df7bb-5eab-4823-
9830-abb668731de5"

o
"list" @ {
"href" : "http://localhost:16105/d1lcm/admin/institutions”
¥
"module" : {
"href" : "http://localhost:16105/d1lcm/admin"
b
"people" : {

"href" : "http://localhost:16105/d1lcm/admin/institutions/7f9df7bb-5eab-4823-
98a0-abb668731de5/people”
),

"organizationalUnit" : {
"href" : "http://localhost:16105/dlcm/admin/institutions/7f9df7bb-5eab-4823-
98a0-abb668731de5/organizationelUnits"
}
}
¥

3.3.2. Usage

To get a resource

Request http(s)://<root context>/<module>/<things>/<thingID>

Verb GET

13

Parameter(s)

Expected
Return Code

Return Object

Name

None
200
404

JSON object

To create a new resource

Request
Verb

Parameter(s)

Expected
Return Code

Return Object

To update a resource

Description

Success
Not found

See Structure

http(s)://<root context>/<module>/<things>

POST

Name

JSON Object with
fields to set

201

JSON Object

The resource must already exist.

Request
Verb

Parameter(s)

Expected
Return Code

Return Object

To delete a resource

Request
Verb

Parameter(s)

14

Description

Object in JSON format. The fields and the
structure depend on the type: see API
Documentation

Created

See Structure

http(s)://<root context>/<module>/<things>/<thingID>

PATCH

Name

JSON Object with field
to update

200
304
404

JSON Object with
updated fields

Description

Object in JSON format. The fields and the
structure depend on its type: see API
Documentation

Modified
Not modified
Not found

See Structure

http(s)://<root context>/<module>/<things>/<thingID>

DELETE

Name

None

Description

link:../swagger-ui.html
link:../swagger-ui.html
../swagger-ui.html
../swagger-ui.html

Expected 200 Deleted

Return Code 404 Not found
410 Gone
Return Object String: 0OKI If success

3.4. Security

3.4.1. Authentication

All web services are secured and require authentication.

User authentication relies on Switch AAI which is a Single Sign-On (SSO), based on Shibboleth.
Access to Web services relies on OAuth 2.0 access delegation.

OAuth 2.0 is a protocol allowing third-party applications to grant limited access to an HTTP service,
either on behalf of a resource or by allowing the third-party application to obtain access on its own.
It uses the authorization code grant implementation.

o
. - - - - o
DLCM - Application Security - Authorization Code type p—o DLCM
g 0© ©2020

Browser (Resource Owner) || AAI (Identity Provider) | | DLCM:-Client (Client) | | DLCM-Admin (Authorization Server) || DLCM- Applicat-"ions" (Resource Server |
E Request DLCM resource E .,:
1 1 L4
Memmmmmm e] Deliver Shibboleth page authentication

' '
1_Gives Shibboleth authentication credentials »
v [

1
1
1
i
1 1
{< Shibboleth authentication request !

1
1
i
1
1
]
1
i
1
1
i
1
Needs: usemame, passwordh| :
. i
1
1
|
Shibboleth Token Response ’: E

i

1

i
1
'
]
L}
1}
L}
'
H
'
] 1}
] L}
] 1}
1 L}
' '
] L}
] 1}
' '
] 1 1}
] 1 L}
] 1 1}
H pooTTTTTTTTTT T \ H
H \ L Authorization Code Request N H
: : ! d !
i i | Needs: client_id, redirect_uri, '
: ! ! response_type=code[, scope, state] !
] 1 1 1}
' i i '
i i k“ _ Autherization Code B@Enqn_sg_u E
H , | Exchange Code for Access Token, | H
i i i T H
' i i '
H ! ! Needs: client_id, client_secret, redirect_uri, H
i i i grant_type=authorization_code, code E
1 1 1 L}
i i i(- Access Token [+ Refresh T, QEEQLLJ E
[fesp T : i E :
T I | | '
i : | Call DLCM resource with Access Token N
: : 1 1
! ! ! ! Check Access token validity
] 1 1 1
' I | |
b S e |_______Glive DLCM resource with Data
< H " H .
v | | I 0
| Browser (Resource Owner) I | AAI (Identity Provider) I | DLCM-Client (Client) I | DLCM-Admin (Authorization Server) I | DLCM- Applicat-"ions" (Resource Server) I

3.4.2. Application Roles

15

https://www.shibboleth.net/
https://tools.ietf.org/html/rfc6749

Application Roles

ADMIN oo

Manage global settings

The features are organized in:

* Functional features list for an user
o Organizational Units, Deposits, Search, etc...
* Global settings list for an administrator

o Organizational wunits, People, Institutions, Funding agencies, Submission policies,
Preservation policies, Licenses, etc...

* Security parameters list for a root

- System Configuration, User Roles, Users, etc...

See details in Application Roles.

3.4.3. Roles

16

Roles

il Institution HOrganizational Unit

.

¢g,] Steward : Manage deposits
Manage archives

:,* Creator Initiate, edit & submit deposit

Add data files in deposit

Download “closed” archives
with request (ACL)

[e]

0% DLCM

) ©2023

A role can be inherited from an institution if an organizational unit is linked to this institution. For
example, if an manager of an institution or an administrator gives the steward role to an user, this
user will became the steward of all organizational units of this institution.

See details in Roles.

Organizational Unit Definition

* An organizational unit is a logical entity where managers can define security rules:
> Who can submit deposits?

o Who can download archives?

* Could be a research project, a laboratory, a department or any other organizational group of
researchers.

17

Chapter 4. Data Access

Access Level

909

License
0C0L 0G0
i’ 2%

Data Use Agreement

ERER=

Data Tag

A A A 4

Data Use Policy

“As open as possible, ﬂ U O

as closed as necessary ” °ro DLCM

o ©2023

When data must be archived, at the ingestion, some questions must be answered:

® Who can access the archive? = Define the correct level of Access Levels
@ Are there sensitive data in the archive? = Define the correct tag of Data Tags
3 What are terms & conditions to use the archive? = Define the correct policy of Data Use Policies

@ What are obligations to impose for using the archive? = Choose the license or specify the data
use agreement

4.1. Data Access Scales

Each concept (access level, data tag or data use policy) have a restriction scale to control the access
to the archives: from less to more restrictive.

18

Access Level Data Tag Data Use Policy

Not defined
Grey

Public % None

Blue

Controlled public License
Green

ﬂ Click-through DUA
glrlgn;iaccountable Signed DUA

Restriction
p)
D
wn
~+
3,
O
~+
]
o

-
€66 666

Fully accountable
Red ﬂ External DUA
6-6-OMFA %
a = Encrypted storage cMri?n)::,Tum restricted
v MFA = Multi-Factor Authentication 6-6-OMFA o4
DUA = Data Use Agreement o a DLCM

) ©2023

4.2. Data Access Compatibility

The compatibility between those concepts are described in the following matrix.

al

Restricted Closed

|
S »

o

a8 HEHBE B 28

o
= Encrypted storage @8- = Multi-Factor Authentication (MFA) °O-o DLCM

o 02023

19

Chapter 5. Submission Integration

5.1. Overview

Ingestion

Deposit

Add data file Add package

Validate

Approve

[o]

°Oo DLCM®

[o] ©2020

The ingestion process consists either in the creation of a deposit based on a wizard-like assisted
approach, or in using a ready-to-use SIP.

5.2. Wizard-like assisted deposit

The deposit operation consists in gathering all data files and the information necessary to create a
SIP package. The objective of the wizard is to structure the deposit and to categorize each data file:

20

Data File

Categories

Observational

Experimental

Derived

Reference

Digitalized

Secondary

Publication

DataPaper

Documentation

Binaries

VirtualMachine

Administrative

Document

WebSite

Package

Metadata

CustomMetadata

UpdatedMetadata

ArchiveThumbnail

ArchiveDataUseAgreement

ArchiveReadme

[}

> DLCM

o ©2023

The description of each category is detailed at the Data File Categories section in the Annexes.

The data file assignment to a deposit can be done file-by-file (mode 0) or by batch (mode 0):

Add data file

file

file

o

file |

O DLCM®

5.2.1. To create a deposit

Request
Verb

http(s)://<root context>/preingest/deposits

POST

21

Parameter(s)

Expected
Return Code

Name
Deposit JSON Object

201

Return Deposit JSON Object
Object
Roles Creator (see Roles)
r .
O Deposit example
w

The minimal set of information for a deposit is:

{

"organizationalUnitId" :

"title" : "Data set title",

"year" : 2018,

"description" : "Data set description”
}

5.2.2. To deposit data files

Description
See Deposit section in API Documentation

Created

See Deposit section in API Documentation

"Organizational unit ID of the data set",

To add data files to a deposit, the first option (mode 0) is to deposit them one-by-one.

By creating an URI

It’s possible to provide a URI (useful for large files).

Request
Verb

Parameter(s)

Expected
Return Code

Return
Object

Roles

http(s)://<root context>/preingest/deposits/<DepositID>/data

POST

Name

Data File JSON Object
201

Data File JSON Object

Creator (see Roles)

Description
See Data File section in API Documentation

Created

See Data File section in API Documentation

The effective download of the referenced data (see API Documentation) is done asynchronously by
the “Pre-Ingest” module, which supports the file (for files on local file systems), http and https

protocols.

22

../swagger-ui.html#preingest
../swagger-ui.html#preingest
../swagger-ui.html#preingest
../swagger-ui.html#preingest
../swagger-ui.html#preingest

By uploading a file

Request

Verb POST

Content-type multipart/form-data

Name
file

Parameter(s)

category (optional)

type (optional)

folder (optional)

Expected 201

Return Code

Return Object Data File JSON Object

Roles Creator (see Roles)

http(s)://<root context>/preingest/deposits/<DepositID>/upload

Description
Data file to upload

Data file category (see Data File Categories
section in the Annexes)

Data file sub-category (see Data File Categories
section in the Annexes)

Sub-folders of data file

Created

See Data File section in API Documentation

If the data file is the descriptive metadata of the dataset, it must respect the deposit metadata
schema. If not, the data file will have a status In-Error.

5.2.3. To deposit a data files package

The second option (mode [) is to add data files in a deposit by batches. The batch mode supports zip

files, containing all the data files to upload, including sub-folders.

Request

Verb POST

Content-type multipart/form-data

Parameter(s) Name
file
category (optional)
type (optional)
Expected 201

Return Code

Return Array of Data file
Object JSON Object
Roles Creator (see Roles)

Description
Zip file which contains data files

Data file category (see Data File Categories
section in the Annexes)

Data file sub-category (see Data File Categories
section in the Annexes)

Created

See Data File section in API Documentation

http(s)://<root context>/preingest/deposits/<DepositID>/upload-archive

23

../swagger-ui.html#preingest
../swagger-ui.html#preingest

5.2.4. To get the deposit metadata schema

Request
Verb

Parameter(s)

Expected
Return Code

Return
Object

Roles

http(s)://<root context>/preingest/deposit/schema

GET

Name

None

200

Descriptive Metadata
XML schema

All (see Roles)

Description

Success

XML schema file

5.2.5. To submit a deposit for approval

This step is optional. It depends of submission policy if an approval is expected.

Request

Verb

Parameter(s)

Expected
Return Code

Return
Object

Roles

http(s)://<root context>/preingest/deposits/<DepositID>/submit-for-

approval

POST

Name

None
200
304
404
Result JSON

Creator (see Roles)

5.2.6. To approve a deposit

Request
Verb

Parameter(s)

24

http(s)://<root context>/preingest/deposits/<DepositID>/approve

POST

Name

None

Description

Modified
Not modified
Not found

Action result

{

"message": "Deposit status
successfully",

"resId": "<DepositID>",

"status": "EXECUTED"

}

Description

changed

Expected 200

Return Code 304
404
Return Result JSON
Object
Roles Approver (see Roles)

5.3. By using a SIP

5.3.1. To create a SIP

Request
Verb POST
Parameter(s) Name

SIP JSON Object
Expected 201

Return Code

Return SIP JSON Object
Object
Roles Creator (see Roles)
C
O SIP example
w

The minimal set of information for an SIP is:

{
"info" : {
organizationalUnitId" :
"name" : "Name of the SIP",
"description” : "Description of the SIP"
}
}

5.3.2. To submit a SIP package

Request

Verb POST

Modified
Not modified
Not found

Action result

{

"message":
successfully",
"resId": "<DepositID>",
"status": "EXECUTED"

}

"Deposit status changed

http(s)://<root context>/ingest/sip

Description
See SIP section in API Documentation

Created

See SIP section in API Documentation

"Organizational unit ID of the SIP",

http(s)://<root context>/ingest/sip/<sipID>/upload

25

../swagger-ui.html#ingest
../swagger-ui.html#ingest

Content-type multipart/form-data

Parameter(s) Name Description
Zip file The Zip file must contain a metadata XML file
and at least one data file.
Expected 201 Created
Return Code
Return Data File JSON Object See Data File section in API Documentation
Object
Roles Creator (see Roles)

The SIP metadata file must be in XML and respect the SIP metadata schema.

5.3.3. To get SIP metadata schema

Request http(s)://<root context>/ingest/sip/schema
Verb GET
Parameter(s) Name Description
None -
Expected 200 Success
Return Code
Return SIP DLCM Metadata XML XML schema file
Object schema
Roles All (see Roles)

26

../swagger-ui.html#ingest

Chapter 6. Dissemination Integration

6.1. To search archives

Request http(s)://<root context>/access/metadata/search?query=<query>
Verb GET
Parameter(s) Name Description
Query Query criteria
Expected 200 Success
Return Code
Return Collection JSON Object List of Archive information & DataCite metadata
Object (see [archive-example]) with pagination
Roles Public (see Roles)

Query examples:

-
Q e criterionl criterion? = criterionl or criterion2

e criterionT AND criterion? = criterionl and criterion2

6.2. To get an archive

6.2.1. By archive ID

Request http(s)://<root context>/access/metadata/<archivelD>
Verb GET
Parameter(s) Name Description
None -
Expected 200 Success
Return Code
Return Archive Public Archive information & DataCite metadata (see
Object fletadata JSON Object [archive-example])
Roles Public (see Roles)
@ Archive public metadata example
w
{

"resId": "<archivelID>",
"index": "<index name>",
"type": "metadata"”,
"metadata": {

27

"aip-disposition-approval”: "<true/false>",
"aip-organizational-unit": "<organizational unit ID>",
"aip-retention": "<retention duration in days",
"aip-retention-end": "<retention end date>",
"aip-unit": "<true/false>",
"aip-size": "<archive size>",
"creation": "<creation date>"
"datacite.xml": "<DataCite XML>",
"aip-container": "BAG_IT",
"datacite": {

<DataCite JSON>

}
}
}
6.2.2. By DOI
Request http(s)://<root context>/access/metadata/search-doi?doi=<D0I>
Verb GET
Parameter(s) Name Description
DOI DOI to search
Expected 200 Success
Return Code
Return Archive Public Archive information & DataCite metadata (see
Object Metadata JSON Object [archive-example])
Roles Public (see Roles)

6.3. To download an archive

To download an archive, several steps are needed:

1. To check if a download request exists and to know its status: To get download status
2. To create a download request: To prepare download

3. To download the archive: To download archive content

6.3.1. To get download status

Request http(s)://<root context>/access/metadata/<archiveID>/download-status
Verb GET
Parameter(s) Name Description

None -

28

Expected 200 Success

Return Code 404 Not found = To prepare download

Return Download Status SUBMITTED Download query created

Object IN_ERROR Download query in error
IN_PREPARATION Preparing download query
DOWNLOADING Downloading AIP
IN_DISSEMINATION_PREPARATION Preparing DIP
READY Download query completed = To
download archive content

Roles Public (see Roles)

6.3.2. To prepare download

Request http(s)://<root context>/access/metadata/<archivelD>/prepare-download
Verb POST
Parameter(s) Name Description
None -
Expected 202 Accepted
Return Code
Return -
Object
Roles Public (see Roles)

6.3.3. To download archive content

Request http(s)://<root context>/access/metadata/<archivelD>/download
Verb GET
Parameter(s) Name Description
None -
Expected 200 Success
Return Code
Return Archive File
Object
Roles Public (see Roles)

6.4. To export metadata with OAI-PMH

The OAI-PMH provider of DLCM solution supports version 2.0 of the protocol for metadata
harvesting. The specifications are detailed on the Open Archives Initiative website.

29

https://www.openarchives.org/OAI/openarchivesprotocol.html

Request
Verb

Parameter(s)

Expected
Return Code

Return
Object

Roles

30

http(s)://<root context>/access/oai-provider/oai

GET or POST with content-type application/x-www-form-urlencoded
Name Description
OAI parameters See OAI-PMH specifications.

smartView=dlem_0aiZ.xs Qptional parameter to display OAI XML in a

1 structured way, with XML transformation to
generate HTML.

200 Success

503 Service unavailable, i.e. the Data Management

module is not running

OAI-PMH XML data OAI-PMH XML data. See OAI-PMH specifications

Public (see Roles)

https://www.openarchives.org/OAI/openarchivesprotocol.html#ProtocolMessages
https://www.openarchives.org/OAI/openarchivesprotocol.html#ProtocolMessages

Chapter 7. Annexes

7.1. Glossary

Acronym Description Source
AIC Archival Information Collection OAIS
AIP Archival Information Package (i.e. Archive) OAIS
AIU Archival Information Unit OAIS
API Application Programming Interface Software

CRUD Create Read Update Delete Software
Deposit Research data deposit DLCM
DIP Dissemination Information Package OAIS
HAL Hypertext Application Language Software
HATEOAS Hypermedia As The Engine Of Application State Software
IP Information Package OAIS
JSON JavaScript Object Notation Software
OAIS Open Archival Information System OAIS
REST REpresentational State Transfer Software
SIP Submission Information Package OAIS
SOA Service Oriented Architecture Software

7.2. DLCM Modules

Module Description REST Name
Pre-Ingest Pre-Ingest module to prepare a deposit in SIP preingest
Ingest Ingest module to check an SIP and to transform ingest

it into an AIP

Archival Storage Archival Storage module to check an AIP and to archival-storage
store it
Data Mgmt Data Management module to index metadata data-mgmt
Access Access module to manage queries/request and to access

generate a DIP

Preservation Planning Preservation Planning module to manage preservation-planning
preservation activities

Admin Administration module to manage general admin
settings

31

7.3. Application Roles

Icon

7.4. Roles

Icon Role
Manager
l Steward
(00)
Approver

Application Role Description

A root is the super administrator of the application.

defining new parameters, like license or preservation

= He has access to global settings of the application.

ROOT
= He has access to everything.

ADMIN An administrator can configure the application by
policy.

USER

An user is a person who have to use the application.

= He has access to the preservation space, based on the
permission he has at institution or organizational unit

level.

Within an institution M

He can manage users of this
institution.

He can create organizational units
for this institution.

He has the steward role for all
organizational units of the
institution.

He has the approver role for all
organizational units of the
institution.

Within an organizational unit

He can manage users of this
organizational unit,
plus the same rights as a steward.

He has the steward role for the
organizational unit.

He can manage deposits and
archives,

plus the same rights as an approver.

He has the approver role for the
organizational unit.

He can approve or reject a
submitted deposit, plus the same
rights as a creator.

Creator He has the creator role for all He has the creator role for the
‘ organizational units of the organizational unit.
institution. He can initiate, edit & submit

.' deposits, add data files in deposits,

plus the same rights as a visitor.

(]

Visitor He has the visitor role for all He has the visitor role for the
organizational units of the organizational unit.
institution. He can download restricted

archives,

plus the same rights as user.

User A user is an authenticated person He has no permission on any

(with a login/password) on the organizational unit.

application. He can download closed archives, if
He has no permission on any he asked a access request and a
institution. steward have accepted the request.

plus the same rights as public.

Public A public is not authenticated on the He has no permission on any

application. organizational unit.
He has no permission on any He can download public archives,
institution. which are Open Access.

¢ Jo Lo

7.5. Access Levels

Access Level Description

The archive is accessible to everyone
= Open access.

The archive is accessible to team members (i.e., Org. Unit)
= Trusted parties.

The archive is accessible case by case thank to access
control list (ACL)
= Individuals.

Q0

33

7.6. Data Tags

Icon

34

Tag Type

Description

Not defined
Data sensitivity not set to
support previous archives.

Public
Non-confidential
information, stored and
shared freely.

Controlled public

Not harmful personal
information, shared with
some access control.

Accountable

Potentially harmful personal
information, shared with
loosely verified and/or
approved recipients.

More accountable
Sensitive personal
information, shared with
verified and/or approved
recipients under agreement.

Trans Stora Access

fer

Clear

Clear

ge

Clear

Clear

Encryp C(Clear

ted

Encryp Encryp

ted

ted

Open

Email, OAuth
verified
registration

Password,
Registered ,
Approval,
click-through
DUA

Password,
Registered,
Approval,
signed DUA

Requi
reme
nt
Suppo
rt

Suppor
ted

Suppor
ted

Suppor
ted

Suppor
ted

Suppor
ted

If
Encryp

tionis
enable
don
storag
e
device

Acces
S
Level
Comp
atibili
ty
All

Restri
cted

and
Closed

only

Restri
cted

and
Closed

only

Closed
only

Icon Tag Type Description Trans Stora
fer ge
Fully accountable Encryp Encryp
‘ Very sensitive personal ted ted
information, shared with
strong verification of
approved recipients under
signed agreement.
Maximum restricted Encryp Multi-
Maximum sensitive, explicit ted entcer dYP

permission for each
transaction, strong
verification of approved
recipients under signed
agreement.

o DUA = Data Use Agreement

Sources:

» Sharing Sensitive Data with Confidence: The Datatags System

Access

Two-factor
Authenticatio
n, Registered,
Approval,
signed DUA

Two-factor
Authenticatio
n, Registered,
Approval,
signed DUA

Requi Acces

reme S
nt Level
Suppo Comp
rt atibili
ty
Suppor (losed
ted only
1f
Encryp
tionis
enable
don
storag
e
device

Partia Closed

Iy only
Suppor

ted

If
Encryp

tionis
enable
on
storag
e
device

Multi-
encryp

ted
not

suppo
rted

yet

35

https://techscience.org/a/2015101601/

7.7. Data Use Policies

Icon Data Use Policy Description
‘—- None No data use policy. No constraint.
— D License A license is mandatory.

Click-through DUA A DUA is mandatory. It is stored in the archive and is
approved when the user click to request access.

Signed DUA A DUA is mandatory. It is stored in the archive. It must be
downloaded, signed and provided when the user request
access.

NRIRING

External DUA A DUA is mandatory. But, it is managed and stored
externally, so not in the archive. The control is done
outside the application.

]

DUA = Data Use Agreement

7.8. Deposit Status

Status Description

The deposit has been approved.

CHECKED The deposit has been checked.

The deposit has been cleaned: all date files have been purged.

CLEANING A clean job is currently running.

Status Description

The deposit has been archived.

The deposit has been created.

The deposit is in error. An action must be done to fix the deposit.
The deposit is open to add data files.

The deposit must be validated.

The validation process has rejected the deposit.

The deposit process is started.

7.9. Data File Categories

Category Sub-Category Description
Primary Primary Data category
Observational Data captured in real-time, usually

irreplaceable. For example, sensor data, survey
data, sample data, neuro-images.

Experimental Data from lab equipment, often reproducible,
but can be expensive to reproduce. For example,
gene sequences, chromatograms, and toroid
magnetic field data.

Simulation Data generated from test models. The model and
its parameters are as important as the result and
are also part of the data. For example, climate
models, economic models, etc.

Derived Data derived from other data. Generally
reproducible but can also be expensive (for
instance parameters of LLM). For example, text
and data mining, compiled database, 3D models,
etc.

Reference A (static or organic) conglomeration or
collection of smaller (peer-reviewed) datasets,
most probably published and curated. For
example, gene sequence databanks, chemical
structures, or spatial data portals. It can be
expensive to create.

Digitalized Digital version of analogue objects. For example,
manuscripts, books, audio etc.

Secondary Secondary Data category

37

Category Sub-Category Description

Publication Research publication or article
DataPaper Research data paper
Documentation Other documentation
Software Software category
Code Code or programs
Binaries Binaries or executables
VirtualMachine Images of virtual machines

Administrative Administrative category

Document All kinds of documents
WebSite Web sites
Other Others types of files
Package DLCM Package category

InformationPackage DLCM Package (internal used only)
Metadata DLCM metadata in XML format

CustomMetadata Specific metadata of a research in JSON or XML
format

UpdatedMetadata DLCM updated metadata in XML format
UpdatePackage DLCM Updated Package (internal used only)
Internal DLCM Archive category
DatasetThumbnail Dataset Thumbnail (for archive version < 3.1)
ArchiveThumbnail ~ Archive Thumbnail (for archive version >= 3.1)
ArchiveReadme Archive README

ArchiveDataUseAgreem Data Use Agreement (DUA) for archives with
ent sensitive data

The categories are dependent on the configuration.

» The categories, Primary, Secondary & Software, are available if research
o data archiving is enable.

* The category, Administrative, is available if administrative data archiving is
enable.

7.10. Data File Status

38

Status Description

An update of the data category or of the data
type is in progress.

An update of the relative location is in progress.

CLEANED The data file is purged after a clean job.

A clean job is currently running.
The data file has been created.

The data file has a forbidden format.

The file format identification ran successfully.

The file format identification was skipped
because of the file size.

The file format identification failed.

The data file has a format which needs a action.

The data file is in error.

The data file has been processed: downloaded or
copied.

The data file processing is completed.

The data file is created.

The data file is created, before to be processed.
The virus check ran successfully: no virus.

The virus check was skipped because of the file
size.

Action

n/a

n/a

n/a
n/a
n/a

This data file must be deleted
before submitting deposit.

n/a

n/a

n/a

This data file must be deleted or
validated before submitting
deposit.

An action must be done to fix
the data file.

n/a

n/a
n/a
n/a
n/a

n/a

39

	DLCM Integration Guide
	Table of Contents
	Chapter 1. DLCM Architecture
	1.1. DLCM Solution
	1.2. OAIS Model

	Chapter 2. Integration Points
	2.1. For Submission
	2.2. For Dissemination
	2.3. For Developers

	Chapter 3. REST Web Services
	3.1. Overview
	3.1.1. URL Structure
	3.1.2. CRUD Operations
	3.1.3. HTTP Status Codes
	3.1.4. Error Details

	3.2. Collection
	3.2.1. Structure
	Data Section
	Page Section
	Links Section

	3.2.2. Usage
	To get a list of things

	3.3. Instance
	3.3.1. Structure
	Links Section

	3.3.2. Usage
	To get a resource
	To create a new resource
	To update a resource
	To delete a resource

	3.4. Security
	3.4.1. Authentication
	3.4.2. Application Roles
	3.4.3. Roles
	Organizational Unit Definition

	Chapter 4. Data Access
	4.1. Data Access Scales
	4.2. Data Access Compatibility

	Chapter 5. Submission Integration
	5.1. Overview
	5.2. Wizard-like assisted deposit
	5.2.1. To create a deposit
	5.2.2. To deposit data files
	By creating an URI
	By uploading a file

	5.2.3. To deposit a data files package
	5.2.4. To get the deposit metadata schema
	5.2.5. To submit a deposit for approval
	5.2.6. To approve a deposit

	5.3. By using a SIP
	5.3.1. To create a SIP
	5.3.2. To submit a SIP package
	5.3.3. To get SIP metadata schema

	Chapter 6. Dissemination Integration
	6.1. To search archives
	6.2. To get an archive
	6.2.1. By archive ID
	6.2.2. By DOI

	6.3. To download an archive
	6.3.1. To get download status
	6.3.2. To prepare download
	6.3.3. To download archive content

	6.4. To export metadata with OAI-PMH

	Chapter 7. Annexes
	7.1. Glossary
	7.2. DLCM Modules
	7.3. Application Roles
	7.4. Roles
	7.5. Access Levels
	7.6. Data Tags
	7.7. Data Use Policies
	7.8. Deposit Status
	7.9. Data File Categories
	7.10. Data File Status

